时间:2021-07-01 10:21:17 帮助过:22人阅读
或者
select a.username, a.sid,b.SQL_TEXT, b.SQL_FULLTEXT
 from v$session a, v$sqlarea b 
where a.sql_address = b.address 
---执行过的
select a.USERNAME        登录Oracle用户名,
       a.MACHINE         计算机名,
       SQL_TEXT,
       b.FIRST_LOAD_TIME,
       b.SQL_FULLTEXT
  from v$sqlarea b, v$session a
 where a.sql_hash_value = b.hash_value
   and b.FIRST_LOAD_TIME between ‘2016-11-01/09:24:47‘ and
       ‘2016-11-31/09:24:47‘
 order by b.FIRST_LOAD_TIME desc;
SELECT OSUSER 电脑登录身份,
    PROGRAM 发起请求的程序,
    USERNAME 登录系统的用户名,
    SCHEMANAME,
    B.Cpu_Time 花费cpu的时间,
    STATUS,
    B.SQL_TEXT 执行的sql
FROM V$SESSION A
LEFT JOIN V$SQL B ON A.SQL_ADDRESS = B.ADDRESS
          AND A.SQL_HASH_VALUE = B.HASH_VALUE
ORDER BY b.cpu_time DESC v$sql、v$sqlarea 、v$sqltext这三哥视图都可以用于查询共享池中已经解析过的SQL语句及其相关信息。
V$SQL中列出了共享SQL区中所有语句的信息,它不包含GROUP BY字句,并且为每一条SQL语句中单独存放一条记录;V$SQLAREA中一条记录显示了一条共享SQL区中的统计信息。它提供了有在内存中、解析过的和准备运行的SQL语句的统计信息;V$SQLTEXT包含了库缓存中所有共享游标对应的SQL语句。它将SQL语句分片显示。SELECT l.session_id sid,
    s.serial#,
    l.locked_mode 锁模式,
    l.oracle_username 登录用户,
    l.os_user_name 登录机器用户名,
    s.machine 机器名,
    s.terminal 终端用户名,
    o.object_name 被锁对象名,
    s.logon_time 登录数据库时间
FROM v$locked_object l, all_objects o, v$session s
WHERE l.object_id = o.object_id
  AND l.session_id = s.sid
ORDER BY sid, s.serial#;kill掉当前的锁对象可以为
alter system kill session ‘sid, s.serial#‘;SELECT se.sid,
       se.serial#,
       pr.SPID,
       se.username,
       se.status,
       se.terminal,
       se.program,
       se.MODULE,
       se.sql_address,
       st.event,
       st. p1text,
       si.physical_reads,
       si.block_changes
  FROM v$session se, v$session_wait st, v$sess_io si, v$process pr
 WHERE st.sid = se.sid
   AND st. sid = si.sid
   AND se.PADDR = pr.ADDR
   AND se.sid > 6
   AND st. wait_time = 0
   AND st.event NOT LIKE ‘%SQL%‘
 ORDER BY physical_reads DESC
(实际使用率小于30%)的表,也就是可以收缩的表
条件为什么block>100,因为一些很小的表,只有几行数据实际大小很小,但是block一次性分配就是5个(11g开始默认一次性分配1M的block大小了,见create table storged的NEXT参数),5个block相对于几行小表数据来说就相差太大了
算法中/0.9是因为块的pfree一般为10%,所以一个块最多只用了90%,而且一行数据大于8KB时容易产生行链接,把一行分片存储,一样的一个块连90%都用不满
AVG_ROW_LEN还是比较准的,比如个人实验情况一表6个字段,一个number,其他5个都是char(100)但是实际数据都是’1111111’7位,AVG_ROW_LEN显示依然为513
SELECT TABLE_NAME,(BLOCKS*8192/1024/1024)"理论大小M",
(NUM_ROWS*AVG_ROW_LEN/1024/1024/0.9)"实际大小M",
round((NUM_ROWS*AVG_ROW_LEN/1024/1024/0.9)/(BLOCKS*8192/1024/1024),3)*100||‘%‘ "实际使用率%"
FROM USER_TABLES where blocks>100 and (NUM_ROWS*AVG_ROW_LEN/1024/1024/0.9)/(BLOCKS*8192/1024/1024)<0.3
order by (NUM_ROWS*AVG_ROW_LEN/1024/1024/0.9)/(BLOCKS*8192/1024/1024) desc
(索引删除行数除以索引总行数的百分比>30%即认为索引碎片大),也就是需要重建的索引
select name,
       del_lf_rows,
       lf_rows,
       round(del_lf_rows / decode(lf_rows, 0, 1, lf_rows) * 100, 0) || ‘%‘ frag_pct
  from index_stats
 where round(del_lf_rows / decode(lf_rows, 0, 1, lf_rows) * 100, 0) > 30;
集群因子越接近块数越好,接近行数则说明索引列的列值相等的行分布极度散列,可能不走索引扫描而走全表扫描
select tab.table_name,tab.blocks,tab.num_rows,ind.index_name,ind.clustering_factor,
round(nvl(ind.clustering_factor,1)/decode(tab.num_rows,0,1,tab.num_rows),3)*100||‘%‘ "集群因子接近行数"
from user_tables tab, user_indexes ind where tab.table_name=ind.table_name
and tab.blocks>100
and nvl(ind.clustering_factor,1)/decode(tab.num_rows,0,1,tab.num_rows) between 0.35 and 3或
select tab.owner,tab.table_name,tab.blocks,tab.num_rows,ind.index_name,ind.clustering_factor,
round(nvl(ind.clustering_factor,1)/decode(tab.num_rows,0,1,tab.num_rows),3)*100||‘%‘ "集群因子接近行数"
from dba_tables tab, dba_indexes ind where tab.table_name=ind.table_name and tab.owner
not in (‘SYS‘,‘SYSTEM‘,‘WMSYS‘,‘DBSNMP‘,‘CTXSYS‘,‘XDB‘,‘ORDDATA‘,‘SYSMAN‘,‘CATALOG‘,‘APEX_030200‘,‘MDSYS‘,‘OLAPSYS‘,‘EXFSYS‘)
and tab.blocks>100
and nvl(ind.clustering_factor,1)/decode(tab.num_rows,0,1,tab.num_rows) between 0.35 and 3select s.sid, s.serial#, s.LOGON_TIME, s.machine, p.spid, p.terminal
  from v$session s, v$process p
 where s.paddr = p.addr
   and s.sid = XX
    or p.spid = YYselect username, sql_text, machine, osuser
  from v$session a, v$sqltext_with_newlines b
 where DECODE(a.sql_hash_value, 0, prev_hash_value, sql_hash_value) =
       b.hash_value
   and a.sid = &sid
 order by piece;
select ss.SID,
       ss.SERIAL#,
       ss.LOGON_TIME,
       pr.SPID,
       ss.action,
       sa.SQL_FULLTEXT,
       ss.machine,
       ss.TERMINAL,
       ss.PROGRAM,
       ss.USERNAME,
       ss.STATUS,
       ss.OSUSER,
       ss.last_call_et
  from v$process pr, v$session ss, v$sqlarea sa
 where ss.status = ‘ACTIVE‘
   and ss.username is not null
   and pr.ADDR = ss.PADDR
   and ss.SQL_ADDRESS = sa.ADDRESS
   and ss.SQL_HASH_VALUE = sa.HASH_VALUE
   and pr.spid = XX
(当然这是个误解,都是历史的了,怎么可能还查到spid,其实查看trace文件名就可以知道spid,trace文件里面有sid和具体sql,如果trace存在incident,那trace就看不到具体sql,但是可以在incident文件中看到具体的sql,如DW_ora_17751.trc中17751就是spid,里面有这样的内容Incident 115 created, dump file: /XX/incident/incdir_115/DW_ora_17751_i115.trc,那么在DW_ora_17751_i115.trc就可以看到具体的sql语句)
DB_ora_29349.trc中出现如下
* SESSION ID:(5057.12807) 2016-10-26 14:45:52.726
通过表V$ACTIVE_SESSION_HISTORY来查,如下
select a.sql_id, a.machine, a.*
  from V$ACTIVE_SESSION_HISTORY a
 where a.session_id = 5057
   and a.SESSION_SERIAL# = 12807
查询上面的machine的IP是多少
select s.sid, s.serial#, s.LOGON_TIME, s.machine, p.spid, p.terminal
  from v$session s, v$process p
 where s.paddr = p.addr
   and s.machine = ‘localhost‘
通过上面的spid在oracle服务器上执行netstat -anp |grep spid即可
[oracle@dwdb trace]$ netstat -anp |grep 17630
tcp      210      0 192.168.64.228:11095        192.168.21.16:1521          ESTABLISHED 17630/oracleDB
tcp        0      0 ::ffff:192.168.64.228:1521  ::ffff:192.168.64.220:59848 ESTABLISHED 17630/oracleDB出现两个,说明来自220,连接了228数据库服务器,但是又通过228服务器的dblink去连接了16服务器
(对象锁被释放的等待者),及引起死锁的堵塞者会话blocking_session(对象加锁者)
select sid,
       blocking_session,
       LOGON_TIME,
       sql_id,
       status,
       event,
       seconds_in_wait,
       state,
       BLOCKING_SESSION_STATUS
  from v$session
 where event like ‘enq%‘
   and state = ‘WAITING‘
   and BLOCKING_SESSION_STATUS = ‘VALID‘
BLOCKING_SESSION:Session identifier of the blocking session. This column is valid only if BLOCKING_SESSION_STATUS has the value VALID.
可以在v$session.LOGON_TIME上看到引起死锁的堵塞者会话比等待者要早
如果遇到RAC环境,一定要用gv$来查,并且执行alter system kill session ‘sid,serial#’要到RAC对应的实例上去执行
或如下也可以
select
           (select username from v$session where sid=a.sid) blocker,
         a.sid,
         a.id1,
         a.id2,
       ‘ is blocking ‘ "IS BLOCKING",
         (select username from v$session where sid=b.sid) blockee,
             b.sid
    from v$lock a, v$lock b
   where a.block = 1
     and b.request > 0
     and a.id1 = b.id1
     and a.id2 = b.id2;查询x开头的动态性能视图,只能用sys用户
SELECT sid, event, p1raw, seconds_in_wait, wait_time
  FROM sys.v_$session_wait
 WHERE event like ‘library cache %‘
p1raw结果为’0000000453992440’
SELECT s.sid, kglpnmod "Mode", kglpnreq "Req", s.LOGON_TIME
FROM x$kglpn p, v$session s
WHERE p.kglpnuse=s.saddr
AND kglpnhdl=‘0000000453992440‘;结果为671 0 3 2011-11-1 12:00:00
  525 2 0 2011-11-4 12:00:00
select d.session_id, s.SERIAL#, d.name
  from dba_ddl_locks d, v$session s
 where d.owner = ‘CC‘
   and d.SESSION_ID = s.sid
SELECT s.sid,
       s.serial#,
       s.username,
       spid,
       v$sql.sql_id,
       machine,
       s.terminal,
       s.program,
       sql_text
  FROM v$process, v$session s, v$sql
 WHERE addr = paddr
   and s.sql_id = v$sql.sql_id
   AND sql_hash_value = hash_value
select owner, job_name, sid, b.SERIAL#, b.username, spid
  from ALL_SCHEDULER_RUNNING_JOBS, v$session b, v$process
 where session_id = sid
   and paddr = addr
select job,b.sid,b.SERIAL#,b.username,spid from DBA_JOBS_RUNNING a ,v$session b,v$process  where a.sid=b.sid and paddr=addrselect round(sum(pga_used_mem) / 1024 / 1024, 0) total_used_M,
       round(sum(pga_used_mem) / count(1) / 1024 / 1024, 0) avg_used_M,       
       round(sum(pga_alloc_mem) / 1024 / 1024, 0) total_alloc_M,
       round(sum(pga_alloc_mem) / count(1) / 1024 / 1024, 0) avg_alloc_M
  from v$process;select *
from (select executions,username,PARSING_USER_ID,sql_id,sql_text  
   from v$sql,dba_users where user_id=PARSING_USER_ID order by executions desc)
where rownum <=5;select *
from (select DISK_READS,username,PARSING_USER_ID,sql_id,ELAPSED_TIME/1000000,sql_text  
   from v$sql,dba_users where user_id=PARSING_USER_ID order by DISK_READS desc)
where rownum <=5;(不要使用DISK_READS/ EXECUTIONS来排序,因为任何一条语句不管执行几次都会耗逻辑读和cpu,可能不会耗物理读(遇到LRU还会耗物理读,LRU规则是执行最不频繁的且最后一次执行时间距离现在最久远的就会被交互出buffer cache),是因为buffer cache存放的是数据块,去数据块里找行一定会消耗cpu和逻辑读的。Shared pool执行存放sql的解析结果,sql执行的时候只是去share pool中找hash value,如果有匹配的就是软解析。所以物理读逻辑读是在buffer cache中,软解析硬解析是在shared pool)
select *
from (select BUFFER_GETS,username,PARSING_USER_ID,sql_id,ELAPSED_TIME/1000000,sql_text  
   from v$sql,dba_users where user_id=PARSING_USER_ID order by BUFFER_GETS desc)
where rownum <=5;(不要使用BUFFER_GETS/ EXECUTIONS来排序,因为任何一条语句不管执行几次都会耗逻辑读和cpu,可能不会耗物理读(遇到LRU还会耗物理读,LRU规则是执行最不频繁的且最后一次执行时间距离现在最久远的就会被交互出buffer cache),是因为buffer cache存放的是数据块,去数据块里找行一定会消耗cpu和逻辑读的。Shared pool执行存放sql的解析结果,sql执行的时候只是去share pool中找hash value,如果有匹配的就是软解析。所以物理读逻辑读是在buffer cache中,软解析硬解析是在shared pool)
select *
from (select CPU_TIME/1000000,username,PARSING_USER_ID,sql_id,ELAPSED_TIME/1000000,sql_text  
   from v$sql,dba_users where user_id=PARSING_USER_ID order by CPU_TIME/1000000 desc)
where rownum <=5;(不要使用CPU_TIME/ EXECUTIONS来排序,因为任何一条语句不管执行几次都会耗逻辑读和cpu,可能不会耗物理读(遇到LRU还会耗物理读,LRU规则是执行最不频繁的且最后一次执行时间距离现在最久远的就会被交互出buffer cache),是因为buffer cache存放的是数据块,去数据块里找行一定会消耗cpu和逻辑读的。Shared pool执行存放sql的解析结果,sql执行的时候只是去share pool中找hash value,如果有匹配的就是软解析。所以物理读逻辑读是在buffer cache中,软解析硬解析是在shared pool)
select event,
       sum(decode(wait_time, 0, 0, 1)) "之前等待次数",
       sum(decode(wait_time, 0, 1, 0)) "正在等待次数",
       count(*)
  from v$session_wait
 group by event
 order by 4 descSelect distinct se.username,
         se.sid,
         su.blocks * to_number(rtrim(p.value))/1024/1024 as space_G,
         su.tablespace,
         sql_text
    from V$TEMPSEG_USAGE su, v$parameter p, v$session se, v$sql s
   where p.name = ‘db_block_size‘
     and su.session_addr=se.saddr
     and su.sqlhash=s.hash_value
     and su.sqladdr=s.address
(任何一条执行过的语句不管执行了几次在V$SQL中都只有一条记录,V$SQL中会记录执行了几次。两条一模一样的语句但是在不同的schema下执行的两种结果,如select * from t1.test在sye、system下执行则V$SQL只有一条记录(谁先执行则PARSING_SCHEMA_NAME显示谁)。如在sys和system都执行select * from test则V$SQL中有两条记录,两条记录的CHILD_NUMBER和PARSING_SCHEMA_NAME不一样。同一个用户下执行一样的语句如果大小写不一样或加了hint的话则会出现多个V$SQL记录,说明V$SQL对应的sql语句必须一模一样,如果alter system flush shared_pool(主站慎用)后再执行一样的语句,发现语句在V$SQL中的SQL_ID和HASH_VALUE与之前的一样,说明SQL_ID和HASH_VALUE应该是oracle自己的一套算法来的,只是根据sql语句内容来进行转换,sql语句不变则SQL_ID和HASH_VALUE也不变。)
第一种
select * from (
select count(*),sql_id, substr(sql_text,1,40)
from v$sql
group by sql_id, substr(sql_text,1,40) having count(*) > 10 order by count(*) desc) where rownum<10第二种
count(1)>10表示类语句运行了10次以上
select sql_id, FORCE_MATCHING_SIGNATURE, sql_text
from v$SQL
where FORCE_MATCHING_SIGNATURE in
(select /*+ unnest */
FORCE_MATCHING_SIGNATURE
from v$sql
where FORCE_MATCHING_SIGNATURE > 0
and FORCE_MATCHING_SIGNATURE != EXACT_MATCHING_SIGNATURE
group by FORCE_MATCHING_SIGNATURE
having count(1) > 10)select b.file_id,b.tablespace_name,b.file_name,b.AUTOEXTENSIBLE,
ROUND(b.bytes/1024/1024/1024,2) ||‘G‘  "文件总容量",
ROUND((b.bytes-sum(nvl(a.bytes,0)))/1024/1024/1024,2)||‘G‘ "文件已用容量",
ROUND(sum(nvl(a.bytes,0))/1024/1024/1024,2)||‘G‘ "文件可用容量",
ROUND(sum(nvl(a.bytes,0))/(b.bytes),2)*100||‘%‘ "文件可用百分比"
from dba_free_space a,dba_data_files b
where a.file_id=b.file_id
group by b.tablespace_name,b.file_name,b.file_id,b.bytes,b.AUTOEXTENSIBLE
order by b.tablespace_name;select b.file_id,b.tablespace_name,b.file_name,b.AUTOEXTENSIBLE,
ROUND(b.MAXBYTES/1024/1024/1024,2) ||‘G‘  "文件最大可用总容量",
ROUND((b.bytes-sum(nvl(a.bytes,0)))/1024/1024/1024,2)||‘G‘ "文件已用容量",
ROUND(((b.MAXBYTES/1024/1024/1024)-((b.bytes-sum(nvl(a.bytes,0)))/1024/1024/1024))/(b.MAXBYTES/1024/1024/1024),2)*100||‘%‘ "文件可用百分比"
from dba_free_space a,dba_data_files b
where a.file_id=b.file_id and b.file_id>4
group by b.tablespace_name,b.file_name,b.file_id,b.bytes,b.AUTOEXTENSIBLE,b.MAXBYTES
order by b.tablespace_name;select b.tablespace_name,a.total,b.free,round((b.free/a.total)*100) "% Free" from
(select tablespace_name, sum(bytes/(1024*1024)) total from dba_data_files group by tablespace_name) a,
(select tablespace_name, round(sum(bytes/(1024*1024))) free from dba_free_space group by tablespace_name) b
WHERE a.tablespace_name = b.tablespace_name
order by "% Free";SELECT temp_used.tablespace_name,total,used,
           total - used as "Free",
           round(nvl(total-used, 0) * 100/total,3) "Free percent"
      FROM (SELECT tablespace_name, SUM(bytes_used)/1024/1024 used
              FROM GV_$TEMP_SPACE_HEADER
             GROUP BY tablespace_name) temp_used,
           (SELECT tablespace_name, SUM(bytes)/1024/1024 total
              FROM dba_temp_files
             GROUP BY tablespace_name) temp_total
     WHERE temp_used.tablespace_name = temp_total.tablespace_nameselect tablespace_name, status, sum(bytes) / 1024 / 1024 M
  from dba_undo_extents
 group by tablespace_name, status
select name,
       round(total_mb / 1024) "总容量",
       round(free_mb / 1024) "空闲空间",
       round((free_mb / total_mb) * 100) "可用空间比例"
  from gv$asm_diskgroupSELECT c.owner                                  "用户",
       a.tablespace_name                        "表空间名",
       total/1024/1024                          "表空间大小M",
       free/1024/1024                           "表空间剩余大小M",
       ( total - free )/1024/1024               "表空间使用大小M",
       Round(( total - free ) / total, 4) * 100 "表空间总计使用率   %",
       c.schemas_use/1024/1024                  "用户使用表空间大小M",
       round((schemas_use)/total,4)*100         "用户使用表空间率  %"
FROM   (SELECT tablespace_name,
               Sum(bytes) free
        FROM   DBA_FREE_SPACE
        GROUP  BY tablespace_name) a,
       (SELECT tablespace_name,
               Sum(bytes) total
        FROM   DBA_DATA_FILES
        GROUP  BY tablespace_name) b,
       (Select owner ,Tablespace_Name,
                Sum(bytes) schemas_use
        From Dba_Segments
        Group By owner,Tablespace_Name) c
WHERE  a.tablespace_name = b.tablespace_name
and a.tablespace_name =c.Tablespace_Name
order by "用户","表空间名"select sum(percent_space_used) || ‘%‘ "已使用空间比例"
  from V$RECOVERY_AREA_USAGE或
select round(100 * (a.space_used / space_limit), 2) || ‘%‘ "已使用空间比例",
       a.*
  from v$recovery_file_dest a;
alter system kill session一执行则session即标记为KILLED,但是如果会话产生的数据量大则这个kill可能会比较久,在这个过程中session标记为KILLED但是这个会话还在V$session中,则V$session.paddr还在,所以可以匹配到V$process.addr,所以process进程还在;当kill过程执行完毕,则这个会话即不在V$session中
会话不在的
select *
  from v$process
 where addr not in (select paddr from v$session)
   and pid not in (1, 17, 18)
会话还在的,但是会话标记为killed
select *
  from v$process
 where addr in (select paddr from v$session where status = ‘KILLED‘)再根据上述结果中的SPID通过如下命令可以查看到process的启动时间
ps auxw|head -1;ps auxw|grep SPIDselect * From dba_tables where nvl(chain_cnt, 0) <> 0chain_cnt :Number of rows in the table that are chained from one data block to another or that have migrated to a new block, requiring a link to preserve the old rowid. This column is updated only after you analyze the table.
查询V$SYSSTAT视图可以查看从内存中读取数据的频率。它提供了数据库中设置的数据块缓存区的命中率。这个信息可以帮助您判断系统何时需要更多的数据缓存(DB_CACHE_SIZE),或者系统的状态何时调整得不佳(二者均将导致较低的命中率)。
通常情况下,您应当确保读数据的命中率保持在95%以上。将系统的命中率从98%提高到99%,可能意味着性能提高了100%(取决于引起磁盘读操作的语句)。
SELECT a.VALUE + b.VALUE logical_reads,
       c.VALUE phys_reads,
       round(100 * (1 - c.value / (a.value + b.value)), 2) || ‘%‘ hit_ratio
  FROM v$sysstat a, v$sysstat b, v$sysstat c
 WHERE a.NAME = ‘db block gets‘
   AND b.NAME = ‘consistent gets‘
   AND c.NAME = ‘physical reads‘;或
SELECT DB_BLOCK_GETS + CONSISTENT_GETS Logical_reads,
       PHYSICAL_READS phys_reads,      
       round(100 *
             (1 - (PHYSICAL_READS / (DB_BLOCK_GETS + CONSISTENT_GETS))),
             2) || ‘%‘ "Hit Ratio"
  FROM V$BUFFER_POOL_STATISTICS
 WHERE NAME = ‘DEFAULT‘;或
SELECT 1 - (SUM(DECODE(NAME, ‘physical reads‘, VALUE, 0)) /
       (SUM(DECODE(NAME, ‘db block gets‘, VALUE, 0)) +
       (SUM(DECODE(NAME, ‘consistent gets‘, VALUE, 0))))) "Read Hit Ratio"
  FROM v$sysstat;或者
在Oracle 10g中,也可以直接获得V$SYSMETRIC中的 AWR 信息:
select metric_name, value
  from v$sysmetric
 where metric_name = ‘Buffer Cache Hit Ratio‘;
可以使用V$ROWCACHE视图来发现对数据字典的调用是否有效地利用了通过init.ora参数SHARED_POOL_SIZE分配的内存缓存.
如果字典的命中率不高,系统的综合性能将大受影响。推荐的命中率是95%或者更高。如果命中率低于这个百分比,说明可能需要增加init.ora参数SHARED_POOL_SIZE。
但要记住,在V$SGASTAT视图中看到的共享池包括多个部分,而这里仅仅就是其中之一。注意:在大幅度使用公共同名的环境中,字典命中率可能难以超过75%,即使共享池的尺寸很大。这是因为Oracle必须经常检查不存在的对象是否依旧存在。
SQL> select sum(gets),sum(getmisses),(1 - (sum(getmisses) / (sum(gets)+ sum(getmisses)))) * 100 HitRate from v$rowcache;
 SUM(GETS) SUM(GETMISSES)    HITRATE
---------- -------------- ----------
  35555492         186408 99.4784608在Oracle 10g中,也可以直接获得V$SYSMETRIC中的AWR信息:
SQL> select metric_name, value from v$sysmetric where metric_name =‘Library Cache Hit Ratio‘;
METRIC_NAME                                           VALUE
------------------------------------------------------